Incremental learning of full body motions via adaptive Factorial Hidden Markov Models

نویسندگان

  • Dana Kulić
  • Wataru Takano
  • Yoshihiko Nakamura
چکیده

This paper describes a novel approach for incremental learning of motion pattern primitives through long-term observation of human motion. Human motion patterns are abstracted into a factorial hidden Markov model representation, which can be used for both subsequent motion recognition and generation. The model size is adaptable based on the discrimination requirements in the associated region of the current knowledge base. As new motion patterns are observed, they are incrementally grouped together based on their relative distance in the model space. A new algorithm for sequentially training the Markov chains is developed, to reduce the computation cost during model adaptation. The resulting representation of the knowledge domain is a tree structure, with specialized motions at the tree leaves, and generalized motions closer to the root. Tests with motion capture data for a variety of motion primitives demonstrate the efficacy of the algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Hamming Ball Auxiliary Sampling for Factorial Hidden Markov Models

We introduce a novel sampling algorithm for Markov chain Monte Carlo-based Bayesian inference for factorial hidden Markov models. This algorithm is based on an auxiliary variable construction that restricts the model space allowing iterative exploration in polynomial time. The sampling approach overcomes limitations with common conditional Gibbs samplers that use asymmetric updates and become e...

متن کامل

Incremental Learning and Memory Consolidation of Whole Body Human Motion Primitives

The ability to learn during continuous and on-line observation would be advantageous for humanoid robots, as it would enable them to learn during co-location and interaction in the human environment. However, when motions are being learned and clustered on-line, there is a trade-off between classification accuracy and the number of training examples, resulting in potential misclassifications bo...

متن کامل

Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages

Factorial Hidden Markov Models (FHMMs) are powerful models for sequential data but they do not scale well with long sequences. We propose a scalable inference and learning algorithm for FHMMs that draws on ideas from the stochastic variational inference, neural network and copula literatures. Unlike existing approaches, the proposed algorithm requires no message passing procedure among latent v...

متن کامل

Word recognition and incremental learning based on neural associative memories and hidden Markov models

An architecture for achieving word recognition and incremental learning of new words in a language processing system is presented. The architecture is based on neural associative memories and hidden Markov models. The hidden Markov models generate subword-unit transcriptions of the spoken words and provide them as input to the associative memory module. The associative memory module is a networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007